Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Rong Su, ${ }^{\text {a }}$ Jian-Ming Gu ${ }^{\text {b }}$ and Duan-Jun Xu ${ }^{\mathbf{a} *}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, People's Republic of China, and ${ }^{\text {b }}$ The Central Laboratory, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.109$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(4-hydroxybenzoato- $\left.\kappa^{2} O, O^{\prime}\right)(1,10$-phenan-throline- $\left.\kappa^{2} N, N^{\prime}\right)$ copper(II)

In the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, the $\mathrm{Cu}^{\text {II }}$ atom is located on a twofold axis and assumes an elongated octahedral geometry formed by two 4-hydroxybenzoate anions and a 1,10 -phenanthroline (phen) molecule. There is a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between phen and the benzene ring of benzoate.

Comment

In some biological systems, $\pi-\pi$ stacking between aromatic rings is correlated with the electron-transfer process (Deisenhofer \& Michel, 1989). A series of metal complexes incorporating aromatic ligands has been prepared in our laboratory to study the regularity of $\pi-\pi$ stacking. As part of our ongoing investigations, the title complex, (I), incorporating 1,10-phenathroline (phen), has been prepared.

The molecular structure of (I) is illustrated in Fig. 1. The $\mathrm{Cu}^{\mathrm{II}}$ atom is located on a twofold axis. The phen N atoms and two O atoms of 4-hydroxybenzoate anions form the equatorial plane of octahedral coordination, with normal bond distances (Table 1). Owing to the Jahn-Teller effect, the $\mathrm{Cu}-\mathrm{O}$ bonds in the axial direction are longer than those in the equatorial plane by $0.2-0.6 \AA$, while the $\mathrm{Cu}-\mathrm{O} 2$ bond in (I) is longer than $\mathrm{Cu}-\mathrm{O} 1$ by 0.673 (2) \AA. It is notable that the $\mathrm{Cu}-\mathrm{O} 1-$ C 1 angle of $106.99(14)^{\circ}$ is much smaller than the value of 120° expected for a normal $s p^{2}$-hybridized O atom. This implies the existence of genuine coordination between atoms Cu and O 2 (Li et al., 2005; Su et al., 2005). Thus, the coordination geometry around the $\mathrm{Cu}^{\mathrm{II}}$ atom is described as elongated octahedral.

Received 17 January 2005
Accepted 21 January 2005 Online 29 January 2005

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.]

Figure 2
The $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (dashed lines) between neighboring $\mathrm{Cu}^{\mathrm{II}}$ complexes. [Symmetry code: (iv) $x,-1+y, z$.]

The $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction occurs in (I), as shown in Fig. 2. The $\mathrm{H} 14 \cdots C_{g}$ separation $\left(C_{g}\right.$ is the centroid of the C^{iv} benzene ring) and $\mathrm{C} 14-\mathrm{H} 14 \cdots C_{g}$ angle are $2.76 \AA$ and 143°, respectively [symmetry code: (iv) $x,-1+y, z$]. Neighboring complexes are linked to each other via an O3-H3a…O2 2^{ii}

The crystal packing, showing the intermolecular hydrogen bonding (dashed lines).
hydrogen bond and a weak $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 2^{\text {iii }}$ hydrogen bond [symmetry codes: (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x, 1-y,-\frac{1}{2}+z$], to form a supramolecular structure (Table 2 and Fig. 3).

Experimental

Each reagent was commercially available and of analytical grade. $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(0.17 \mathrm{~g}, 1 \mathrm{mmol})$, 4-hydroxybenzoic acid $(0.14 \mathrm{~g}$, $1 \mathrm{mmol})$, phen $(0.20 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.05 \mathrm{~g}, 1 \mathrm{mmol})$ were dissolved in a water/ethanol ($1: 1,20 \mathrm{ml}$) mixture. The solution was refluxed for 5 h , then cooled to room temperature and filtered. Blue single crystals of (I) were obtained from the filtrate after two weeks.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=517.96$
Monoclinic, $C 2 / c$
$a=19.9073$ (15) \AA
$b=10.2232$ (5) \AA
$c=11.0723$ (7) \AA
$\beta=104.705(2)^{\circ}$
$V=2179.6(2) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.651, T_{\text {max }}=0.855$
9663 measured reflections

$$
D_{x}=1.578 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 6854
reflections
$\theta=3.1-25.3^{\circ}$
$\mu=1.05 \mathrm{~mm}^{-1}$
$T=295$ (3) K
Block, blue
$0.41 \times 0.34 \times 0.16 \mathrm{~mm}$

> 2477 independent reflections 2119 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.037$
> $\theta_{\max }=27.4^{\circ}$
> $h=-25 \rightarrow 25$
> $k=-13 \rightarrow 13$
> $l=-13 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.109$
$S=0.99$
2477 reflections
159 parameters H -atom parameters constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0758 P)^{2}\right. \\
&+0.6964 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 1$	$1.9535(16)$	$\mathrm{Cu}-\mathrm{N} 11$	$2.0143(18)$
$\mathrm{Cu}-\mathrm{O} 2$	$2.6262(16)$		
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 1^{\mathrm{i}}$	$94.64(10)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 11$	$90.16(6)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	$55.00(6)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 11^{\mathrm{i}}$	$125.37(6)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 2$	$92.99(6)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}$	$134.78(7)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 11$	$91.82(7)$	$\mathrm{N} 11-\mathrm{Cu}-\mathrm{N} 11^{\mathrm{i}}$	$81.73(10)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 11^{\mathrm{i}}$	$173.51(7)$		

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 a \cdots \mathrm{O} 2^{\text {ii }}$	0.86	1.80	$2.652(3)$	170
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1$	0.93	2.58	$3.067(3)$	113
$\mathrm{C}^{\text {iii }} 3-\mathrm{H} 13 \cdots \mathrm{O}^{2}$	0.93	2.55	$3.174(4)$	124

Symmetry codes: (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x, 1-y, z-\frac{1}{2}$.

Aromatic H atoms were placed in calculated positions, with $\mathrm{C}-$ $\mathrm{H}=0.93 \AA$, and were included in the final cycles of refinement in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The hydroxy H atoms was located in a difference Fourier map and refined riding in its as-found position, with a fixed isotropic displacement parameter of $0.05 \AA^{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and $X P$ (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Su, J.-R., Gu, J.-M. \& Xu, D.-J. (2005). Acta Cryst. E61, m244-m246.

